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Abstract
The rise of distributed energy resources (DERs) is
reshaping modern distribution grids, introducing new
challenges in attaining voltage stability under dynamic
and decentralized operating conditions. This paper
presents NEO-Grid, a unified learning-based frame-
work for volt-var optimization (VVO) and volt-var con-
trol (VVC) that leverages neural network surrogates for
power flow and deep equilibrium models (DEQs) for
closed-loop control. Our method replaces traditional
linear approximations with piecewise-linear ReLU net-
works trained to capture the nonlinear relationship
between power injections and voltage magnitudes. For
control, we model the recursive interaction between
voltage and inverter response using DEQs, allowing
direct fixed-point computation and efficient training via
implicit differentiation. We evaluated NEO-Grid on the
IEEE 33-bus system, demonstrating that it significantly
improves voltage regulation performance compared to
standard linear and heuristic baselines in both optimiza-
tion and control settings. Our results establish NEO-
Grid as a scalable, accurate, and interpretable solu-
tion for learning-based voltage regulation in distribu-
tion grids.

1. Introduction
The modern distribution grid is undergoing a rapid

transformation driven by the proliferation of distributed
energy resources (DERs) such as solar photovoltaics,
electric vehicles, and battery storage. This evolu-
tion introduces new challenges for voltage regulation,
as increased variability and decentralized injections
can lead to voltage violations that compromise equip-
ment safety and power quality. Among available solu-
tions, volt-var management—the practice of modulat-
ing reactive power injections to regulate voltage magni-
tudes—has emerged as a key mechanism for maintain-
ing voltage stability in the face of these disturbances [1].

There are two principal modes of implementing
volt-var strategies. In volt-var optimization (VVO),
reactive power injections are computed via centralized

optimization to minimize system-wide voltage deviation
[2]. In contrast, volt-var control (VVC) seeks to learn
local, autonomous control policies that map bus-level
voltage measurements to reactive power decisions [3].
Both approaches require accurate modeling of how volt-
ages respond to power injections—i.e., the power flow
(PF) relationship.

However, PF models are governed by nonlinear and
non-convex equations derived from Kirchhoff’s laws.
These models are difficult to embed directly in opti-
mization pipelines due to their computational cost and
numerical instability. To address this, many recent
works adopt linear approximations, such as the LinDis-
tFlow model [4; 5], which express voltages as affine
functions of power injections. While these approxima-
tions enable tractable optimization, they often fail to
capture key nonlinearities, especially under heavy load-
ing or highly resistive lines.

To bridge this gap, we adopt a data-driven mod-
eling approach using piecewise-linear neural networks.
These ReLU-based models serve as flexible surrogates
that can approximate the complex, nonlinear power flow
mappings with high accuracy [6; 7]. Crucially, they
are differentiable and easily integrated into optimization
frameworks, enabling neural approximations to serve as
drop-in replacements for analytical models in tasks like
VVO. For instance, by formulating the learned network
as a set of mixed-integer linear constraints, the resulting
optimization can faithfully replicate the physical behav-
ior of the system without requiring access to full net-
work parameters—a principle also explored in recent
constraint-learning approaches [8].

Nonetheless, while VVO benefits directly from
neural PF surrogates, the design of optimal VVC rules
presents a deeper challenge. The interaction between
voltage and control introduces a recursive dynamic:
each inverter measures local voltage, applies a con-
trol rule, which then alters the voltage state of the net-
work, which in turn affects subsequent decisions. This
closed-loop behavior forms a dynamical system that
must be simulated or optimized over—posing signifi-



cant challenges for gradient-based learning. Prior work
has attempted to address this by unrolling the recursion
through recurrent neural networks (RNNs) [9], but such
approaches suffer from vanishing gradients and memory
bottlenecks.

To address this core limitation, we adopt the frame-
work of deep equilibrium models (DEQs) [10; 11].
Rather than unrolling the recursive system over multi-
ple time steps, DEQs solve directly for the fixed-point
voltage profile induced by the control rule. This enables
stable, memory-efficient learning of closed-loop poli-
cies while preserving the physical dynamics of the sys-
tem. Furthermore, DEQs support implicit differentia-
tion: gradients are computed through the equilibrium
point itself without backpropagating through the full tra-
jectory. This allows us to train optimal control rules end-
to-end in a scalable and principled manner.

Our proposed framework, termed NEO-Grid
(NEural-based Optimization and control of Distribu-
tion Grids), unifies data-driven modeling and control
for distribution voltage regulation. Unlike prior meth-
ods, such as [3; 9], which rely on linear approximations
and RNN-based control, NEO-Grid is both nonlinear
and equilibrium-based—delivering enhanced modeling
fidelity and training stability.

Contributions. The main contributions of this work
are:

1. We introduce a unified framework for learning-
based distribution grid optimization, encompassing
both volt-var optimization (VVO) and optimal volt-
var control (VVC).

2. We develop neural surrogate models for nonlinear
power flow and use them for both optimization and
control, improving accuracy over traditional linear
or heuristic methods.

3. We apply deep equilibrium models (DEQs) to
power system control for the first time, enabling
efficient learning of optimal, closed-loop control
rules.

2. System Modeling
We consider a distribution system consisting of

a substation bus feeding N buses in the set N =
{1, . . . , N}. We assume a radial, single-phase system
for simplicity, and thus the number of lines is also N .
However, the proposed machine learning and optimized
decision making techniques can be generalized to non-
radial, multi-phase networks, as well. A subset of buses
in D ⊂ N hosts distributed energy resources (DERs),
such as inverter-interfaced generation or battery. Each

node i ∈ N is connected to the active and reactive power
demand indicated by (pci , q

c
i ) and generation (pgi , q

g
i ). In

addition, let vi denote the voltage magnitude per bus
i, and assume that the substation voltage v0 is fixed
and known. We can stack all voltage/power variables
into N × 1 vectors v, p, and q, with the injection
p := pg − pc, and similarly for q.

Let us use v = f(p,q) to represent the nonlinear
AC-PF model. To form f(·), we need to know the the
network topology given by the set of N line segments in
E ⊂ N ×N , as well as the resistance rij and reactance
xij for each line (i, j) ∈ E . Let pij and qij respectively
denote the real and reactive power flowing from bus i
to bus j on line (i, j). This allows one to express the
nonlinear PF model f(·) using the well-known DistFlow
equations [12]:

pij =
∑
k∈Nj

pjk + rij
p2ij + q2ij

v2i
+ pgj − pcj , (1a)

qij =
∑
k∈Nj

qjk + xij

p2ij + q2ij
v2i

+ qgj − qcj , (1b)

v2j = v2i − 2(rijpij + xijqij) + (r2ij + x2
ij)

p2ij + q2ij
v2i

.

(1c)

Here, Nj denotes the set of downstream child nodes of
bus j. The fractional term (p2ij + q2ij)/v

2
i represents the

squared line current magnitude and is associated with
power losses. To simplify the analysis, the linearized
Distflow (LinDistFlow) model is widely used, which
ignores line power losses. This will be discussed more
in Section 3 later on.

Optimizing feeder voltage using the qg flexibility
from smart inverters along with other reactive power
(var) resources is becoming increasingly important to
mitigate the volatility of distribution systems. We
consider a basic version of the volt-var optimization
(VVO) problem [2; 3; 5], that seeks to minimize the
voltage deviation from the nominal 1.0 pu given by

min
qg

∥v − 1∥22 (2a)

s.t. v = f(p,qg − qc) (2b)
q ≤ qg ≤ q̄ (2c)

Here, the range [q, q̄] relates to the var limits that
can be supplied or absorbed by inverters, as dictated by
their physical limits or operational standards. For sim-
plicity, the rest of paper uses q to denote the controllable
portion of reactive power (i.e., qg), not the total injec-
tion. The VVO formulation can be extended to include
power losses in the objective function or to enforce volt-



age regulation constraints to precisely satisfy the stan-
dard limits of ±5% voltage deviations. It can also be
generalized to include the possible flexibility in p, or
encompass various optimization tasks for distribution
management system; see e.g., a recent overview paper
[1].

Moreover, the VVO problem (2) is the basis for
designing the optimal volt-var control (VVC) rules [9;
13]. Different from VVO that searches any feasible q,
the VVC problem seeks a decision rule of qi ← g(vi; zi)
that is parameterized by zi, such that the qi decision
at bus i can be continuously updated based only on
the localized voltage vi. This localized design greatly
reduces computational and communication overhead,
and thus is easy to implement in practice. We will dis-
cuss more details on the design of the VVC decision
rules in Section 4.

For solving either of these two problems, the key
challenge lies in the nonlinearity of the AC-PF model
f(·). The next section will present our neural approxi-
mation approach to address this challenge by developing
accurate yet computationally tractable PF models.

3. NEO-Grid: neural PF approximation
The gist of our proposed NEO-Grid is to develop

an accurate yet tractable approximation for AC power
flow (AC-PF) models. The following provides a com-
prehensive overview of both linear and neural approx-
imation approaches relevant to distribution-level opti-
mization and control tasks.

Linear PF Approximation: To simplify the AC-PF
model, linearized approximations are widely used. In
particular, the LinDistFlow model approximates the
nonlinear equations (1) by neglecting loss terms and lin-
earizing around vi ≈ 1.0 pu using v2i ≈ 2vi − 1, yield-
ing:

v = Rp+Xq+ 1v0

Here, R and X are sensitivity matrices derived from
feeder topology and line impedance parameters. For
the VVO problem in (2), the model is often written as
v = Xqg + v̄, where v̄ denotes the nominal voltage
profile when no reactive flexibility is available.

To improve accuracy, data-driven linearization can
be employed. Given training samples {[p;q],v}, a
least-squares (LS) regression model is trained by min-
imizing the loss:

∥v − fLS([p;q];β)∥22

where β are the linear (affine) model coefficients. The
target output can also be chosen as voltage deviations

from nominal, i.e., (v − v̄). While linear approxi-
mations greatly simplify downstream optimization and
control, their accuracy diminishes under substantial
voltage drops, high losses, and diverse operating con-
ditions.

NN-Based PF Approximation: Neural approxima-
tions improve on linear models by learning the nonlinear
mapping between power injections and voltages from
data. Traditionally, piecewise-linear (PWL) approxima-
tions have been proposed to capture nonlinearities by
partitioning the input space into multiple linear regions
[14]. However, PWL methods require manual region
partitioning or mixed-integer formulations, which are
often heuristic or computationally intensive.

Neural networks (NNs) offer a scalable alternative:
as universal function approximators, they can flexibly
learn the nonlinear structure directly from data with-
out explicit partitioning. The trainable ReLU activa-
tions in the hidden layers effectively encode the system’s
piecewise-linear and nonlinear characteristics.

To train the NN approximation fNN(·), we gen-
erate datasets by perturbing nominal consumption pro-
files to create diverse samples of net active and reactive
power [p; q] along with corresponding voltages v from
power flow simulations. This ensures the dataset covers
both typical and extreme operating scenarios, including
DER compensation with negative reactive power.

Figure 1 illustrates the one-hidden-layer NN archi-
tecture employed in NEO-Grid. The input is the 2N -
dimensional net power injection vector, and the output
is the N -dimensional voltage vector. The architecture
consists of a hidden layer with K ReLU units and is
parameterized by weight matrices W(1), W(2), and bias
vector β. Formally, the NN computes:

v = W(2) · ReLU
(
W(1)[p;q] + β

)
where all parameters θ = {W(1),W(2),β} are learned
from data.

Remark 1 (On Output Representations). While our
model directly predicts the voltage vector v, other forms
of fNN(·) such as voltage deviations |v−1| or the scalar
objective ∥v−1∥22 have been considered in the literature
for specific control objectives.

Remark 2 (Compact NN Design for NEO-Grid).
Although we focus here on a fully connected NN, it
is advantageous to exploit the sparse feeder topol-
ogy to build compact NN models with fewer parame-
ters. Such topology-aware designs, as advocated in [6;
15], improve generalization and reduce overfitting—an
avenue we will explore in future work.



Figure 1: One-hidden-layer NN for approximating the
mapping from net power injections [p;q] to bus voltages
v. The trainable weights and biases are learned from
data.

3.1 VVO on NEO-Grid via mixed-integer
programming

Integrating a neural approximation fNN(·) into
volt-var optimization (VVO) has emerged as a promis-
ing paradigm for scalable and data-driven voltage reg-
ulation; see e.g., [2; 8; 6]. The idea is to replace the
nonlinear AC power flow (PF) equations with a learned
piecewise-linear neural network (PWL-NN) surrogate
model. This surrogate maps net active and reactive
power injections directly to bus voltages, enabling the
embedding of power flow constraints into an optimiza-
tion problem without requiring explicit network param-
eters or solving non-convex equations.

The VVO problem is then formulated as:

min
qg

∥v − 1∥22 (3a)

s.t. v = fNN(pg − pc,qg − qc) (3b)
qg ≤ qg ≤ qg (3c)

where v is the bus voltage vector and qg,qg denote
the lower and upper limits on reactive power injection at
the controllable nodes. The quantities p and q represent
the net active and reactive power injections, computed
from fixed consumption and controllable generation, as
previously defined.

The learned model fNN(·) provides a differen-
tiable, structured mapping from net injections to volt-
ages. Constructed with ReLU-based neurons, fNN(·)
is continuous but piecewise-linear. Therefore, the con-
straint (3b) introduces combinatorial structure through
binary activation patterns. As shown in [6], this struc-
ture can be reformulated into mixed-integer linear equal-
ities, which makes the overall problem a mixed-integer
quadratic program (MIQP).

In this formulation, the controllable reactive power
qg and resulting voltages v are optimization variables,
while pc,qc remain fixed. The PWL-NN surrogate thus

Figure 2: Illustration of the PWL volt-var control rule map-
ping v to qg. The operating regions include deadband,
linear ramps, and saturation, parameterized by v̄, δ, σ,
and q̄.

enables embedding power flow physics into the opti-
mization in a compact and computationally tractable
manner, maintaining consistency and interoperability.

4. VVC on NEO-Grid via DEQ-based
implicit learning
We now formally formulate the VVC rule design

problem, building on the framework introduced in [3;
9], and present its solution leveraging the NEO-Grid
neural voltage model. The solution employs a deep-
equilibrium model (DEQ) [10; 11] for memory-
efficient learning of optimal parameters under recursive
system dynamics, as detailed in the following section.

As prescribed by the IEEE 1547 standard [13],
smart inverter VVC rules typically follow a piecewise
linear (PWL) function that maps the local voltage mea-
surement vi at an inverter node i ∈ D to its reactive
power output qgi . Figure 2 depicts this PWL mapping.

This rule is parameterized by four interpretable
quantities: nominal voltage setpoint v̄, deadband half-
width δ, ramp width σ, and maximum reactive power
magnitude q̄. The slope of the ramp regions is given by:

α =
q̄

σ − δ
, (4)

where σ − δ is the ramp region outside the deadband.
The IEEE 1547 standard also imposes the follow-

ing bounds on these parameters to ensure safe and inter-
operable operation:

0.95 ≤ v̄ ≤ 1.05 (5a)
0 ≤ δ ≤ 0.03 (5b)

δ + 0.02 ≤ σ ≤ 0.18 (5c)
0 ≤ q̄ ≤ q̂. (5d)

We explicitly define the VVC control rule as the
mapping:

qg = g(v;ϕ)



where g(·;ϕ) is the PWL function applied at each
inverter node with parameters ϕ := {ϕi}i∈D.

The VVC operates in a closed loop: each inverter
measures its local voltage vi, computes qgi = g(vi;ϕi),
and the updated qg is used in the power flow equations
to compute a new voltage profile v. This process iterates
until the system converges to a steady-state voltage pro-
file v∗, which is typically achieved quickly due to the
fast dynamics of smart inverters [5].

The VVC rule design problem — as originally
formalized in [3; 9] — is to determine the optimal
parameter vector ϕ such that the resulting v∗ is as close
as possible to the flat profile at 1.0 pu, while satisfying
the IEEE standard bounds:

min
ϕ

∥v∗ − 1∥22 (6a)

s.t. v∗ = f
(
pg − pc,qg ← g(v∗;ϕ)− qc

)
(6b)

IEEE standard bounds in (5)

Here, f(·) denotes the power flow mapping (or its neural
surrogate fNN).

This formulation highlights the coupled nature of
voltages and reactive power through g(·) and f(·),
which results in a non-convex optimization problem
with both continuous and combinatorial elements. As
such, it resembles a mixed-integer nonlinear program
(MINLP) and poses computational challenges in large-
scale settings.

Remark 3 (On Stability of the Closed-Loop Dynam-
ics). Stability constraints can be incorporated into the
VVC rule design to promote convergence of the closed-
loop dynamics. Although a closed-form stability crite-
rion for the nonlinear system is not readily available,
adopting the linear-system constraints from [3] is still
meaningful in practice, since the actual distribution net-
work does not exactly follow either the linearized or the
neural surrogate model.

In the linearized VVC formulation [3], stability is
typically enforced via spectral-norm conditions such as

∥dg(α)X∥2 ≤ 1− ϵ,

or their polytopic relaxation

Xα ≤ (1− ϵ)1, αn ≤
1− ϵ∑

m∈N Xnm
, ∀n ∈ N .

These constraints ensure that the fixed-point iteration
converges in the linear setting and can be similarly
adopted here to encourage stable closed-loop behavior.

4.1 DEQ for NEO-Grid Embedded VVC Design
We represent the VVC control rule g(·;ϕ) as a

structured ReLU neural network with fixed weights

Figure 3: Neural implementation of the VVC rule g(vi;ϕ)
as a structured ReLU network, mapping voltage vi to
reactive power qgi through affine transformations and
ReLU activations.

and parameterized breakpoints, following [3; 9]. This
neural formulation translates the classical PWL logic
into a compact, differentiable architecture suitable for
gradient-based optimization. Figure 3 illustrates how
the local voltage vi is transformed through affine opera-
tions and ReLU activations into the reactive power out-
put qgi , while preserving physical interpretability.

Once the control rule is defined, it is coupled with
the network voltage response model. Since reactive
power injections q influence bus voltages v, which in
turn determine q through the control rule, this forms a
closed-loop dynamic captured by the iterative updates:

qg(k) = g(v(k);ϕ) (7a)

v(k+1) = fNN
(
pg − pc,qg(k) − qc

)
(7b)

Here, v(k) denotes the voltage profile at iteration k, and
q(k) is the reactive power vector computed from the
VVC rule applied to v(k). The function fNN(·) repre-
sents the voltage response model, learned as a surrogate
for the nonlinear power flow equations.

In prior work [3; 9], this closed-loop recursion
is implemented as a recurrent neural network (RNN),
where the sequence {v(k)} is unrolled and gradients are
back-propagated through all intermediate states. How-
ever, unrolling suffers from vanishing gradients, high
memory usage, and sensitivity to initialization — mak-
ing training inefficient and unstable in practice.

To overcome these limitations, we leverage the
Deep Equilibrium Model (DEQ) framework [10; 11],
which directly solves for the steady-state voltage profile
v∗ as the fixed point of the closed-loop dynamics:

v∗ = fNN
(
pg − pc, g(v∗;ϕ)− qc

)
(8)

Instead of unrolling the recursion, the DEQ formulation
employs root-finding algorithms (e.g., Anderson accel-
eration) to compute v∗ efficiently. Once the fixed point



Figure 4: Comparison of iterative unrolling and DEQ
for volt-var dynamics. Traditional unrolling repeatedly
applies fNN ◦ g until convergence, consuming memory
and computation. DEQ directly solves the fixed-point v∗

using root-finding and enables efficient implicit differenti-
ation.

is found, gradients of the loss with respect to ϕ can be
computed via implicit differentiation, which bypasses
the need to store intermediate iterates and improves both
memory and computational efficiency.

We formalize the fixed-point problem as solving:

v∗ = Fϕ(v∗,pg − pc,qc) (9)

where Fϕ(·) := fNN
(
pg − pc, g(v∗;ϕ) + qc

)
com-

bines the VVC rule g(·;ϕ) and the learned power flow
surrogate fNN.

This root-finding problem resembles solving the
power flow equations at steady-state and can be effi-
ciently handled using Anderson acceleration or similar
solvers. Figure 4 illustrates the distinction between iter-
ative unrolling and the DEQ approach.

Implicit Differentiation for Fixed-Point Models
Once the equilibrium voltage v∗ is computed, gradients
with respect to the control parameters ϕ can be obtained
without backpropagating through all intermediate iter-
ates. Instead, we apply the implicit function theorem,
which gives:

dL
dϕ

= −

(
I−

∂Fϕ
∂v

)−1

·
∂Fϕ
∂ϕ

· ∇v∗L (10)

where Fϕ(v) denotes the closed-loop mapping from
voltages to voltages.

The loss is defined as:

L(ϕ) = ∥v∗ − 1∥22 (11)

This promotes voltage profiles close to nominal and
enables physics-informed learning without needing
ground-truth voltage or reactive power labels.

Training Pipeline The control parameters ϕ — a sub-
set of (α, σ, δ, v̄) — are optimized via gradient descent.

Algorithm 1: Training Optimal Volt-Var Con-
trol Rule via DEQ

Input: Loading scenarios {xi}Ni=1, with
xi = (pc

i ,p
g
i ,q

c
i )

Output: Optimized control rule parameters ϕ
1 Initialize control rule parameters ϕ
2 foreach scenario xi do
3 Solve for fixed point voltage v∗:

v∗ = Fϕ(v∗;xi)

Compute loss:

Li = ∥v∗ − 1∥22

Compute gradient∇ϕLi using
Equation (10)

4 Update ϕ via gradient descent

5 return ϕ

For each sampled loading scenario xi = (pc
i ,p

g
i ,q

c
i ),

we solve the fixed-point equation for v∗, compute the
loss, and update ϕ using the implicit gradient from
Equation (10). The full training procedure is summa-
rized in Algorithm 1.

Remark 4 (On Stability). The proposed DEQ-based
VVC design is inherently an equilibrium problem: con-
vergence of the fixed-point iteration implies stable
closed-loop behavior. In practice, the convergence (and
hence stability) of the iterative solver depends on the
step size and initialization. We observe that using
smaller step sizes and well-chosen initializations pro-
motes convergence to a stable voltage profile. Future
work will explicitly incorporate stability considerations
into the training and deployment of the control rule.

5. Numerical Results

Experimental Setup. We evaluate all models and
control strategies on the IEEE 33-bus radial distribution
network [4], which consists of N = 32 load buses and
one substation. This network is widely used in distri-
bution system research due to its realistic topology and
moderate complexity.

All simulations and experiments were conducted
on a personal laptop (Dell Inspiron 16 Plus 7640) run-
ning Windows 11 Home (Build 26100), equipped with
an Intel CPU (Intel64 Family 6 Model 170, ∼1.4 GHz),
32 GB of RAM, and an NVIDIA GeForce RTX 4060
Laptop GPU with 8 GB of VRAM.

Neural network models were implemented and
trained using PyTorch. Data generation and power



flow simulations were performed using the Pandapower
library. All experiments and results are fully repro-
ducible; the source code and datasets will be made pub-
licly available on GitHub upon publication.

Experimental Datasets. We construct two distinct
datasets to support the learning-based modeling and
control evaluations. All data is generated using the
Pandapower toolbox, using a fixed nominal operat-
ing point for the IEEE 33-bus network (see Section 3).
At this nominal point, all active and reactive power val-
ues are interpreted as consumption. All quantities are
expressed in per-unit (p.u.) on a 1 MVA base.

The first dataset is used to train the neural net-
work power flow approximation model, as described in
Section 3. Each data point consists of a 64-dimensional
input vector, formed by concatenating the net active and
reactive power at all N = 32 buses: [p;q] ∈ R64. The
output is the corresponding bus voltage vector v ∈ R32,
computed via an AC power flow simulation. Thus, each
row of the dataset contains 96 columns (64 inputs + 32
voltage outputs).

This dataset contains 20,000 samples, with an
80/20 train-test split. The net power demands are gen-
erated by randomly perturbing the nominal active and
reactive power values within ±10%. Importantly, to
ensure that the learned voltage model generalizes to sce-
narios with reactive power compensation (i.e., qg < 0),
we inject an additional layer of perturbation to the reac-
tive power entries: each bus’s net q is randomly per-
turbed within the range [−0.8,+0.2] p.u. This enables
the NN model to learn accurate voltage responses in set-
tings where reactive generation may be present. This
additional perturbation applies to both training and test
splits of the dataset. Once trained and validated, the neu-
ral network no longer uses this dataset in downstream
control tasks.

The second dataset is used exclusively for evalu-
ating and training VVO and VVC schemes. It contains
100 samples, generated with the same ±10% perturba-
tion to nominal active and reactive power demands, but
without any artificial correction to the reactive power.
As such, the reactive power profile remains consistent
with realistic consumption scenarios, and will instead be
adjusted by the VVO and VVC algorithms. As before,
each sample yields a total of 96 columns via power flow
simulation.

The dataset is again split 80/20. The first 80 sam-
ples are used to train the VVC control rule parameters
(see Section 4), while the final 20 samples are used
to evaluate both VVO and VVC performance under
unseen loading conditions. The VVO method, being
optimization-based, does not require a training phase.

Table 1: Test set voltage prediction error (MSE) for
different power flow approximation models. The
neural network significantly outperforms both LinDist-
Flow and linear regression, validating the importance of
nonlinear modeling in accurately capturing power flow
behavior.

Model Voltage MSE (Test Set)

LinDistFlow 1.95× 10−4

Linear Regression (LS) 3.16× 10−5

NEO-Grid (NN) 1.81× 10−6

5.1 Power Flow Approximation Performance.
To evaluate the accuracy of learning-based voltage

modeling, we train a neural network to approximate the
mapping from bus-level power consumption to voltage
magnitudes. Specifically, the model takes as input the
net real and reactive power demands at all N = 32
buses, forming a 64-dimensional input vector [p;q], and
outputs the 32-dimensional voltage vector v. The train-
ing is performed on the first dataset described previ-
ously, which covers a wide range of operating condi-
tions via±10% perturbations and reactive compensation
ranging from −0.8 to +0.2 p.u.

Baseline Models. We benchmark the proposed neural
network model against two standard alternatives. First,
we use the LinDistFlow model, a physics-inspired lin-
ear approximation derived from first principles, which
requires no data-driven training. Second, we implement
a linear regression model, equivalent to a neural net-
work with no hidden layer. This serves as a data-driven
linear baseline trained on the same perturbed dataset,
yielding a single affine mapping from power injections
to voltages. These comparisons help isolate the benefits
of nonlinearity in neural modeling.

Neural Network Setup. The neural network used for
voltage prediction consists of one hidden layer with
K = 64 ReLU units. The model is trained using
PyTorch and optimized using the Adam optimizer with
a learning rate of 10−4, over 50,000 epochs with batch
size 1. Input and output data are scaled to [0, 1] using
a min-max normalization fitted to the data. All train-
ing is conducted on a Dell Inspiron 16 Plus 7640 lap-
top using an NVIDIA GeForce RTX 4060 Laptop GPU
(8 GB VRAM), with PyTorch automatically leveraging
GPU acceleration.

Results. We evaluate each model on the 20% test
split (4,000 samples), computing the mean squared error
(MSE) between predicted and true voltages over all
nodes. As shown in Table 1, the neural network achieves
an MSE of 1.81× 10−6, which is an order of magnitude



better than the linear regression model (3.16 × 10−5)
and over 100x better than the LinDistFlow approxima-
tion (1.95× 10−4).

These results confirm that learning a nonlinear
mapping using a hidden layer with ReLU activation
yields a much more expressive and accurate model of the
power flow dynamics. While the LinDistFlow model is
analytically convenient and the linear regression model
adapts to data, both fail to capture the nonlinear coupling
between nodal powers and voltages that arise due to net-
work topology and line impedances. The neural net-
work, in contrast, learns to accurately account for these
effects, making it a more suitable surrogate for down-
stream optimization and control.

5.2 VVO Test Results.
Optimization Setup. We solve the volt-var optimiza-
tion problem formulated in (2) for the 20 testing samples
in the second dataset. The optimization is implemented
using the Pyomo framework [16], with the neural net-
work power flow surrogate embedded via the OMLT
toolkit [17]. We enforce inverter reactive power con-
straints by bounding the decision variables qg within
[−0.6, 0.1] p.u. at designated DER nodes.

To improve tractability, we approximate the
quadratic objective ∥v − 1∥22 using a linear surrogate
based on the ℓ1 norm: ∥v−1∥1. This relaxation enables
solving the neural VVO problem as a mixed-integer
linear program (MILP) rather than a computationally
expensive MIQP. The same ℓ1 formulation is used across
all models to ensure comparability. All problems are
solved using the open-source CBC solver [18], which
supports mixed-integer linear optimization.

Results and Analysis. We evaluate each method by
computing voltage deviation from the nominal 1.0 p.u.
profile across all buses and test scenarios. We report: (i)
the average absolute deviation across all bus-voltage val-
ues; and (ii) the percentage of voltage entries with devi-
ation exceeding 1%, 3%, and 5%. These statistics are
computed over 20 × 32 = 640 voltage entries. Table 2
summarizes the results.

The results clearly show that all three optimization-
based methods significantly improve voltage regulation
compared to the no-correction baseline, which yields
widespread violations. Among the methods, the NEO-
Grid neural network model consistently achieves the
best performance. It not only delivers the smallest aver-
age absolute voltage deviation (0.94%) but also substan-
tially reduces the incidence of large voltage violations:
only 5.47% of buses exceed a 3% deviation, compared
to over 10% for linear regression and more than 11%
for LinDistFlow. No model exceeds the 5% threshold,
confirming the effectiveness of all methods in enforc-

ing standard voltage limits. These findings emphasize
the value of nonlinear modeling via neural networks
in distribution system control, especially in minimizing
extreme deviations that could compromise system relia-
bility.

5.3 Optimal VVC Test Results.
DEQ-Based VVC Implementation. To implement
volt-var control within the NEO-Grid framework, we
adopt the Deep Equilibrium Model (DEQ) architecture
as described in [19]. We design a minimalist DEQ struc-
ture with a single equilibrium layer responsible for mod-
eling the closed-loop voltage dynamics induced by the
control rules. No additional feedforward layers are used.
The DEQ layer maps an initial voltage estimate v(0) and
an exogenous input x = (pc,pg,qc) to a fixed-point
solution v∗, which satisfies the condition:

v∗ = Fϕ(v∗,p,qc)

DEQ Training Details. Training is conducted on the
first 80 samples of the second dataset, using batch train-
ing over mini-batches of size 16. The total number of
training epochs is 500, with a learning rate of 10−3.
The training process follows the batch-style DEQ opti-
mization scheme introduced in [19], where equilibrium
is approximated per batch using Anderson acceleration.
To enforce the feasibility of learned control rules with
respect to the IEEE 1547 standard (see Eq. (5)), we
apply projected gradient descent at each training step.
This ensures that parameter updates are immediately
projected back onto the feasible region, a process that
is readily incorporated into the PyTorch optimization
pipeline.

Results and Analysis. Table 3 summarizes the per-
formance of various volt-var control strategies across
20 test scenarios. The DEQ-trained NEO-Grid
controller yields the lowest average deviation of
3.63%—outperforming all alternatives—and success-
fully eliminates all voltage entries with deviations at
and beyond 7%. This is in stark contrast to the other
optimization-based models (LinDistFlow and Linear
Regression), which still experience notable large devi-
ations beyond 5% and 7%. Notably, while LinDist-
Flow and LS reduce overall error relative to the initial
or uncontrolled profiles, they fail to match the robust-
ness and consistency achieved by the learned DEQ con-
troller. The no-correction baseline (qg = 0) performs
the worst across all metrics, with more than 65% of volt-
age entries deviating by over 5%, confirming the neces-
sity of reactive control. Overall, these results underscore
the ability of equilibrium-based neural control design to
deliver high-accuracy regulation under diverse load and
generation conditions.



Table 2: Voltage deviation statistics for different volt-var optimization models across 20 test scenarios. The
first column shows the average absolute deviation from 1.0 p.u., while the remaining columns report the percentage of
voltage entries exceeding 1%, 3%, and 5% deviation thresholds, respectively. All optimization-based approaches sig-
nificantly outperform the no-correction baseline. The neural network model (NEO-Grid) achieves the best performance
across all metrics, including the lowest average error and the smallest rates of large violations.

Model Avg Deviation > 1% > 3% > 5%

NEO-Grid (NN) 0.94% 28.13% 5.47% 0.00%
Linear Regression (LS) 0.97% 31.25% 10.78% 0.00%
LinDistFlow 1.04% 30.47% 11.72% 0.00%
No Correction (qg = 0) 5.32% 84.38% 71.88% 65.31%

Table 3: Voltage regulation performance of different VVC models under 20 test scenarios. The first column reports
the average absolute deviation from the nominal 1.0 p.u. voltage profile. The next two columns show the percentage of
bus voltages with less than 5% and 7% deviation, respectively. The DEQ-based NEO-Grid model achieves the lowest
average deviation and eliminates all violations at and beyond 7%, highlighting its superior ability to learn effective volt-
var control policies. All optimization-based strategies improve substantially over the initial and no-correction baselines.

Model Avg Deviation > 5% > 7%

NEO-Grid (NN) 3.63% 38.59% 0.00%
LinDistFlow 4.66% 53.12% 28.12%
Linear Regression (LS) 4.55% 50.00% 26.56%
Initial Weights (No Optimization) 4.76% 53.12% 18.75%
No Correction (qg = 0) 5.32% 65.31% 43.59%

VVO versus VVC Performance. It is worth noting
that the VVO formulation achieves consistently bet-
ter voltage regulation than the optimal VVC meth-
ods across all metrics. This is expected: in VVO,
the inverter reactive power injections qg are treated
as free decision variables constrained only by physi-
cal bounds, allowing the optimization to select values
that minimize deviation directly. In contrast, VVC poli-
cies are restricted to follow a learned piecewise-linear
control rule with a fixed structure—parameterized by
(v̄, σ, δ, q̄)—that maps voltage measurements to reactive
power responses. As such, even under optimal parame-
ter tuning, the VVC framework cannot fully match the
flexibility and performance of the unconstrained VVO
problem. This highlights the inherent trade-off between
policy interpretability and closed-loop control fidelity.

6. Conclusions

This paper presented NEO-Grid, a unified
learning-based framework for volt-var optimization and
control in distribution systems. By integrating nonlin-
ear neural surrogates for power flow and equilibrium-
based control via deep equilibrium models (DEQs), our
approach captures closed-loop voltage dynamics while
remaining tractable for both optimization and learn-
ing. Experiments on the IEEE 33-bus network show

that NEO-Grid consistently outperforms traditional lin-
ear and heuristic methods in voltage deviation and con-
straint satisfaction. Future work includes extending the
framework to multi-phase systems, stochastic inputs,
and real-time deployment.

References

[1] A. Srivastava, J. Zhao, H. Zhu, F. Ding, S. Lei,
I. Zografopoulos, R. Haider, S. Vahedi, W. Wang,
G. Valverde et al., “Distribution system behind-
the-meter ders: Estimation, uncertainty quantifi-
cation, and control,” IEEE Transactions on Power
Systems, 2024.

[2] Y. Chen, Y. Shi, and B. Zhang, “Data-driven opti-
mal voltage regulation using input convex neural
networks,” Electric Power Systems Research, vol.
189, p. 106741, 2020.

[3] S. Gupta, V. Kekatos, and S. Chatzivasileiadis,
“Optimal design of volt/var control rules of invert-
ers using deep learning,” IEEE Transactions on
Smart Grid, 2024.

[4] M. E. Baran and F. F. Wu, “Network reconfig-
uration in distribution systems for loss reduction
and load balancing,” IEEE Transactions on Power
delivery, vol. 4, no. 2, pp. 1401–1407, 2002.



[5] H. Zhu and H. J. Liu, “Fast local voltage control
under limited reactive power: Optimality and sta-
bility analysis,” IEEE Transactions on Power Sys-
tems, vol. 31, no. 5, pp. 3794–3803, 2016.

[6] Y.-h. Cho and H. Zhu, “Data-driven mod-
eling of linearizable power flow for large-
scale grid topology optimization,” arXiv preprint
arXiv:2409.13956, 2024.

[7] J. Chen, W. Wu, and L. A. Roald, “Data-driven
piecewise linearization for distribution three-phase
stochastic power flow,” IEEE Transactions on
Smart Grid, vol. 13, no. 2, pp. 1035–1048, 2022.

[8] G. Chen, H. Zhang, and Y. Song, “Efficient con-
straint learning for data-driven active distribution
network operation,” IEEE Transactions on Power
Systems, vol. 39, no. 1, pp. 1472–1484, 2024.

[9] S. Gupta, A. Mehrizi-Sani, S. Chatzivasileiadis,
and V. Kekatos, “Deep learning for scalable opti-
mal design of incremental volt/var control rules,”
IEEE Control Systems Letters, vol. 7, pp. 1957–
1962, 2023.

[10] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equi-
librium models,” Advances in neural information
processing systems, vol. 32, 2019.

[11] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale
deep equilibrium models,” Advances in neural
information processing systems, vol. 33, pp. 5238–
5250, 2020.

[12] M. E. Baran and F. F. Wu, “Optimal capacitor
placement on radial distribution systems,” IEEE

Transactions on power Delivery, vol. 4, no. 1, pp.
725–734, 2002.

[13] “Ieee standard for interconnection and interoper-
ability of distributed energy resources with associ-
ated electric power systems interfaces,” IEEE Std
1547-2018 (Revision of IEEE Std 1547-2003), pp.
1–138, 2018.

[14] A. Kody, S. Chevalier, S. Chatzivasileiadis, and
D. Molzahn, “Modeling the ac power flow equa-
tions with optimally compact neural networks:
Application to unit commitment,” Electric Power
Systems Research, vol. 213, p. 108282, 2022.

[15] S. Liu, C. Wu, and H. Zhu, “Topology-aware graph
neural networks for learning feasible and adaptive
ac-opf solutions,” IEEE Transactions on Power
Systems, vol. 38, no. 6, pp. 5660–5670, 2022.

[16] W. E. Hart, C. D. Laird, J.-P. Watson, D. L.
Woodruff, G. A. Hackebeil, B. L. Nicholson, J. D.
Siirola et al., Pyomo-optimization modeling in
python. Springer, 2017, vol. 67.

[17] F. Ceccon, J. Jalving, J. Haddad, A. Thebelt,
C. Tsay, C. D. Laird, and R. Misener, “Omlt: Opti-
mization & machine learning toolkit,” Journal of
Machine Learning Research, vol. 23, no. 349, pp.
1–8, 2022.

[18] J. Forrest, “CBC (Coin-or branch and cut),” https:
//github.com/coin-or/Cbc, 2023, version 2.10.10.

[19] Deep Implicit Layers Tutorial Team,
“Chapter 4: Deep equilibrium models,”
https://implicit-layers-tutorial.org/deep_
equilibrium_models/, accessed: 2025-06-15.


